Extensions 1→N→G→Q→1 with N=C3×C22⋊C4 and Q=D5

Direct product G=N×Q with N=C3×C22⋊C4 and Q=D5
dρLabelID
C3×D5×C22⋊C4120C3xD5xC2^2:C4480,673

Semidirect products G=N:Q with N=C3×C22⋊C4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×C22⋊C4)⋊1D5 = C3×C23.1D10φ: D5/C5C2 ⊆ Out C3×C22⋊C41204(C3xC2^2:C4):1D5480,84
(C3×C22⋊C4)⋊2D5 = C23.6D30φ: D5/C5C2 ⊆ Out C3×C22⋊C41204(C3xC2^2:C4):2D5480,166
(C3×C22⋊C4)⋊3D5 = D3016D4φ: D5/C5C2 ⊆ Out C3×C22⋊C4120(C3xC2^2:C4):3D5480,847
(C3×C22⋊C4)⋊4D5 = C22.D60φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):4D5480,851
(C3×C22⋊C4)⋊5D5 = D30.28D4φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):5D5480,848
(C3×C22⋊C4)⋊6D5 = D309D4φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):6D5480,849
(C3×C22⋊C4)⋊7D5 = C23.11D30φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):7D5480,850
(C3×C22⋊C4)⋊8D5 = C22⋊C4×D15φ: D5/C5C2 ⊆ Out C3×C22⋊C4120(C3xC2^2:C4):8D5480,845
(C3×C22⋊C4)⋊9D5 = Dic1519D4φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):9D5480,846
(C3×C22⋊C4)⋊10D5 = C3×C22⋊D20φ: D5/C5C2 ⊆ Out C3×C22⋊C4120(C3xC2^2:C4):10D5480,675
(C3×C22⋊C4)⋊11D5 = C3×D10.12D4φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):11D5480,676
(C3×C22⋊C4)⋊12D5 = C3×D10⋊D4φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):12D5480,677
(C3×C22⋊C4)⋊13D5 = C3×Dic5.5D4φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):13D5480,678
(C3×C22⋊C4)⋊14D5 = C3×C22.D20φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4):14D5480,679
(C3×C22⋊C4)⋊15D5 = C3×Dic54D4φ: trivial image240(C3xC2^2:C4):15D5480,674

Non-split extensions G=N.Q with N=C3×C22⋊C4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×C22⋊C4).1D5 = C222Dic30φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4).1D5480,843
(C3×C22⋊C4).2D5 = C23.8D30φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4).2D5480,844
(C3×C22⋊C4).3D5 = C23.15D30φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4).3D5480,842
(C3×C22⋊C4).4D5 = C3×Dic5.14D4φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4).4D5480,671
(C3×C22⋊C4).5D5 = C3×C23.D10φ: D5/C5C2 ⊆ Out C3×C22⋊C4240(C3xC2^2:C4).5D5480,672
(C3×C22⋊C4).6D5 = C3×C23.11D10φ: trivial image240(C3xC2^2:C4).6D5480,670

׿
×
𝔽